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Factors influencing the piezoelectric behaviour

of PZT and other “morphotropic phase boundary”

ferroelectrics
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Recent studies of the mechanism of piezoelectricity in PZT and related materials are reviewed
and complemented by new analyses based on the Landau-Ginzburg-Devonshire theory of
ferroelectricity. Particular attention is given to the nature of the morphotropic phase boundary
between the tetragonal and rhombohedral perovskite phases and the accompanying peak in
the piezoelectric coefficient. The importance of the changes in angular dependence of single
crystal piezoelectric coefficients as a function of composition is highlighted together with the
concept of field-induced rotation of the polarization in the (110) plane. It is shown that
introducing the tendency to form monoclinic phases enhances this phenomenon.
The model that the monoclinic phase in PZT is due to the condensation of local disorder in the
polar cation displacements from the macroscopic tetragonal and rhombohedral phases is
examined in some detail using statistical analyses of the Zr/Ti conformation. Whilst the concept
of monoclinic nano-domains is not inconsistent with statistically random distributions, it is
argued that some ordering of the B-site cations may be required to enable the transformation
to a macroscopically observable phase. The implications of this model on the contribution of
polarization rotation to piezoelectricity in PZT are discussed.

C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Lead zirconate titanate (PbZr1−zTizO3 or PZT) has been
the leading, high activity piezoelectric material for over
40 years and consequently is at the heart of the majority
of piezoelectric actuators and sensors in production
today [1]. However, in response to the introduction
of environmental legislation, aimed at reducing the
quantities of heavy metals entering the environment,
research into alternative, lead-free piezoelectric materials
is currently accelerating [2].

For the majority of applications of PZT, the optimum
performance is found at the boundary between the tetrag-
onal and rhombohedral perovskite phases (see Fig. 1),
often known as the morphotropic phase boundary (MPB)
[1]. Conventional wisdom suggests that for compositions
close to the MPB, the piezoelectric coefficients maximise
due to (i) a peak in the spontaneous polarization, to which
the intrinsic piezoelectric coefficient is proportional and
(ii) near degeneracy of the tetragonal and rhombohedral
states, which allows for ease of reorientation of domains

under applied fields and stresses, thereby maximising
the extrinsic piezoelectric contributions. Consequently,
much of the past research and development work on PZT
has focused on the management of domain wall mobility
through the control of defect chemistry. The discussions
in this paper, however, focus mainly on the intrinsic
contribution.

Since the morphotropic phase boundary in PZT ceram-
ics is seen as central to their outstanding piezoelectric
performance, the search for new or improved materials
focuses on systems which possess a similar phase bound-
ary. However, a number of relatively recent discoveries
have driven a reassessment of our understanding of the
MPB in PZT; these are:

(i) The unprecedented performance of complex-
perovskite single crystals, such as [001]-oriented
Pb(Zn1/3Nb2/3)O3-PbTiO3 compositions on the rhombo-
hedral side of their MPB; the mechanism appears to rely
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Figure 1 The phase diagram of Pb(Zr1−zTiz)O3 modified from Jaffe, Cook
and Jaffe [1] to include the monoclinic phase [4].

on a field-induced rotation of the polarization vector in
the (110) plane from the [111] to the [001] axis [3].
(ii) A previously undetected monoclinic phase at the

morphotropic phase boundary in PZT [4] with polariza-
tion in the (110) plane and the presence of monoclinic [5]
and orthorhombic [6] phases at the phase boundary in the
complex-perovskites;
(iii) The local atomic displacements in PZT appear to
differ from those consistent with the macroscopic sym-
metry [7]: for example, in the rhombohedral phase the
lead cation displacements seem to be composed of lo-
cal, short-range, random arrangements of tetragonal type
displacements superimposed on the average, long range
rhombohedral order.

This paper explores these findings, with an emphasis
on using thermodynamic and statistical models to help
understand how the anomalous piezoelectric properties
close to the MPB arise.

2. Polarization rotation
A simplistic treatment of the intrinsic component of piezo-
electricity might suggest that the piezoelectric effect is
greatest parallel to the polar axis. That is, on applying an
electric field parallel to the spontaneous polarization, Ps,
it is augmented by an induced polarization, Pind, which
adds to the lattice strain, x:

x = Q (Ps + Pind )2

= Q P2
s + 2Q Ps Pind + Q P2

ind ≈ xs + 2Q Ps Pind

⇒ �x ≈ 2Q PsεE
(1)

where xs is the spontaneous strain and Q is the relevant
electrostriction coefficient. For small fields, the induced
strain, �x, is proportional to the electrostriction coeffi-
cient, the spontaneous polarisation and the permittivity,
ε, where E is the applied electric field; the approximation

for high permittivity materials, ε ≈ d P
d E , is implicit. Hence

the intrinsic piezoelectric coefficient, dint, is given by

dint = 2Q Psε. (2)

As the direction of Ps is normally taken to be the
direction of maximum spontaneous polarisation, this text-
book treatment can lead to the fallacy that the maximum
intrinsic piezoelectric effect occurs parallel to the polar
axis. Whilst this may be true for simple compounds well
removed from phase transitions, it does not necessarily
hold close to phase transitions at which the direction
of the spontaneous polarization changes (for example
at the morphotropic phase boundary in PZT or at the
tetragonal-orthorhombic transition in barium titanate).

The misconception is highlighted by the large piezo-
electric effect in “domain-engineered” complex per-
ovskite single crystals [3]. It was noted that close to the
MPB, in [001]-poled rhombohedral crystals, the piezo-
electric coefficient is much greater parallel to [100] than
it is along the polar [111] axis. It was proposed and
confirmed [8] that on applying a field parallel to [001],
the polarization rotated from the [111] axis continuously
through the (110) plane to lie parallel, at a sufficiently high
field, to the [001] axis. This “polarization rotation” was
accompanied by a large induced strain. Support for this
type of mechanism came in the form of calculations, from
both the ab initio [9] and thermodynamic [10] schools, us-
ing BaTiO3 as a prototype. In the latter case, the Landau-
Ginzburg-Devonshire (LGD) approach [11] was used to
show how the piezoelectric coefficients parallel to the non-
polar low-index axes could exceed those parallel to the
zero-field polar axes, again due to field induced rotation
of the polarization vector. Furthermore, Damjanovic [12]
calculated that in barium titanate the direction of maxi-
mum piezoelectric coefficient itself rotates as a function
of temperature close to the tetragonal-orthorhombic tran-
sition. A number of ab initio calculations for PZT have
also supported the rotation hypothesis [13, 14].

Whilst “polarization rotation” has been observed ex-
perimentally in complex perovskite crystals [8] and to a
certain extent in barium titanate crystals [15], it is perti-
nent to ask how important is it in PZT ceramics and what
is the role of the monoclinic phase?

3. LGD theory
The conventional Landau-Ginzburg-Devonshire model of
ferroelectrics [11] as applied to perovskites is based on
an elastic Gibbs’ free energy expansion. In the stress-free
case it is of the form:

�G = α200
(
P2

1 + P2
2 + P2

3

) + α400
(
P4

1 + P4
2 + P4

3

)

+ α220
(
P2

1 P2
2 + P2

2 P2
3 + P2

3 P2
1

) + α600
(
P6

1

+ P6
2 + P6

3

) + α420
(
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+ P2
2 P4

3 + P4
3 P2

1 + P2
3 P4

1

) + α222 P2
1 P2

2 P2
3

− E1 P1 − E2 P2 − E3 P3 (3)

Here the series is terminated arbitrarily at the sixth power
of polarization. Pi are the orthogonal components of po-
larization measured parallel to the pseudo-cubic axes of
the perovskite unit cell. Ei are the corresponding compo-
nents of the applied electric field. The coefficient α200 is
necessarily temperature dependent. Hence, providing that
the values of all the αlmn coefficients are known, the values
of the components of polarization can be determined for
any combination of temperature and applied field by min-
imization of �G. Although zero-field analytical solutions
exist, generally, and particularly for the case of non-zero
fields, solutions are more easily found numerically.

The lattice strains are given by:

xi j = Qi jkl Pk Pl (4)

where Q is the electrostriction tensor.
For an arbitrary direction of electric field of ampli-

tude E0 and direction θ to the [001] axis and φ in
the [110] plane, the polarization vector, P, and strain
tensor, x, can be determined. Appropriate transformations
can be applied to calculate the induced strain and piezo-
electric coefficient dθφ parallel to the direction of the field,
using:

E1 = E0 sin θ cos φ

E2 = E0 sin θ sin φ,

E3 = E0 cos θ

(5)

xθφ = x3 cos2 θ − cos θ sin θ(x6 cos φ + x5 sin φ)

+ sin2 θ(x1 cos2 φ − x4 cos φ sin θ + x2 sin2 φ)

(6)

and

dθφ = xθφ (E0) − xθφ(0)

E0
, (7)

where xi represents elements of the strain tensor, accord-
ing to the reduced notation convention [16] and xθφ is the
strain parallel to the applied field.

The set of coefficients, αlmn, are dependent upon tita-
nium concentration, z. The set employed throughout this
paper, is adapted from the coefficients proposed by Haun
[17, 18] and are shown in Table I. The value of α200 is for
a temperature of 300 K. The present calculations are sim-
plified by treating PbZrO3 as a rhombohedral ferroelectric
rather than an orthorhombic antiferroelectric. By extrapo-
lation of the Haun coefficients in the rhombohedral phase
of PZT to zero titanium content, a set of coefficients
for PbZrO3 were derived that satisfy this hypothetical

scenario. To provide greater resolution close to the MPB,
the coefficients for 0.4 < z < 0.6 were fitted to fourth
order polynomials in z, allowing calculations to be made
for any value of titanium concentration in this range.

Fig. 2 shows results for the angular dependence of the
piezoelectric coefficient, dθφ , from the numerical calcula-
tions under weak field conditions (E0 = 1000 V m−1). The
data (excluding PbZrO3) are identical to those of reference
[19] obtained by analytical methods. It can be seen that
for the end-members of the solid solution, PbTiO3 and the
fictitious, rhombohedral ferroelectric PbZrO3, the maxi-
mum induced strain is indeed parallel to the polar axis,
i.e. along [001] and [111] respectively. However, even
for moderate levels of B-site substitution the direction of
maximum strain shifts. In rhombohedral Pb(Zr0.6Ti0.4)O3,
the direction of maximum strain is clearly along <100>,
whilst in tetragonal Pb(Zr0.4Ti0.6)O3, the strain has be-
come more isotropic than in PbTiO3. The significance
of such calculations is confirmed by experimental data
for PZT thin-films: the piezoelectric coefficients of [001]-
oriented, rhombohedral films is almost twice that of [111]-
oriented films of the same composition [20] indicating that
the non-polar [001] direction has the larger piezoelectric
coefficient.

Although the LGD model suggests that on approach-
ing the MPB the direction of maximum piezoelectric ac-
tivity moves away from the polar axis, in this form it
does not necessarily identify polarization rotation as be-
ing the dominant mechanism of piezoelectricity. For in-
stance, calculations of the field-induced strain along [001]
for rhombohedral compositions near the MPB [21] under
high field, suggest a discontinuous polarisation switching
between the [111] and [001] directions, that is a first-order
field-induced transition. This is contrary to the experi-
mental evidence for complex-perovskites which suggest
a continuous polarization rotation mechanism, consistent
with a second order transition [8].

4. Monoclinicity
The discovery that there exists a monoclinic phase in
PZT, intermediate to the tetragonal and rhombohedral
phases at the MPB [4], reveals that the 6th order Landau
model used for the above calculations is flawed, in that
it does not admit solutions for phases in which non-zero
components of polarization can be unequal, as is the case
in monoclinic phases. Subsequently it has been shown
that thermodynamic functions allowing monoclinic and
triclinic solutions require terms up to the 8th and 12th
order respectively [22]. The inclusion of the higher order
terms in the free energy expansion not only allows a mon-
oclinic phase, but for tetragonal and rhombohedral ground
states can encourage monoclinicity, that is rotation of the
polarization vector in the (110) plane, under applied fields
of the type identified in the complex perovskite single
crystals. Revision of the Haun model to include higher or-
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Figure 2 Single crystal piezoelectric coefficient as a function of angle, dθφ , for Pb(Zr1−zTiz)O3 from the 6th order LGD model: (a) z = 0, (b) z = 0.4, (c) z
= 0.6 and (d) z = 1.

der terms can demonstrate how polarization rotation may
be responsible for exceptional piezoelectric properties.

The additional terms for the expansion up to the eighth
power of polarization are:

�G = . . . + α800
(
P8

1 + P8
2 + P8

3

) + α620
(
P2

1

(
P6

2

+P6
3

) + P2
2

(
P6

3 + P6
1

) + P2
3

(
P2

1 + P2
2

))

+α440
(
P4

1 P4
2 + P4

2 P4
3 + P4

3 P4
1

)

+α422
(
P4

1 P2
2 P2

3 + P2
1 P4

2 P2
3 + P2

1 P2
2 P4

3

)

Fig. 3 shows a contour plot of �G for PbZr0.55Ti0.45O3

in the (110) plane for the 6th order set of coefficients of
Table I. The x-axis represents the value of the polarization
along [110] with P1 = P2, whilst the y-axis is P001 (= P3).
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Figure 3 Contour plot of free energy as a function of polarization in the
[110] plane for Pb(Zr0.55Ti0.45)O3 from the sixth-order LGD model. The
energy at point {0,0} is 0 J m−3; the minimum occurs at point {0.29, 0.29}
with an energy of −8.06 × 106 J m−3; contours occur at intervals of 8 ×
104 J m−3.

In such plots a minimum lying on the y-axis represents
tetragonal symmetry. A minimum on the x-axis indicates
that an orthorhombic phase is stable, whilst a minimum
on the line P110 = P001 indicates a rhombohedral phase.
Minima at any other points in the plane are of monoclinic
symmetry. In this plot, the energy is zero at P110 = P001

= 0 and is positive for P110 > 0.4. All other values are
negative. The absolute minimum can be seen to be at P110

= P001 = 0.29, indicating a rhombohedral phase is stable.
A secondary minimum is seen at the point {P110, P001} =
{0, 0.43}. However, there is a significant energy barrier
between the 2 states, indicating that although a sufficient
field parallel to [001] may result in the tetragonal phase
becoming stable, the transition will occur via a disconti-
nuity in the polarization as the barrier is traversed. This
is demonstrated in Fig. 4a and b which show the compo-
nents of polarization and strain calculated as a function
of applied field along [001] for the same example. To
demonstrate the concept of monoclinicity, a set of 8th
order coefficients (‘A’ in Table II) have been derived.

In general the 8th order coefficients in the LGD
expansion are expected to be relatively small. In principle
they can be derived experimentally by fitting of the P(E)
characteristic to the LGD model for a single crystal
sample. At present this is not possible for PZT, for
which good examples of single crystals are notably rare.
Alternatively, the 8th order coefficients can be estimated
by fitting the temperature dependence of the lattice
parameters to the LGD model. However, the accuracy of
this method is expected to be poor unless the data encom-
passes a transition to the monoclinic state, which cannot
be modelled without the 8th order terms. Hence the 8th
order terms could be derived for that range of composi-
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Figure 4 (a) Polarization and (b) strain as a function of applied field for
Pb(Zr0.55Ti0.45)O3 from the sixth order LGD model.

tions exhibiting a monoclinic phase and for which could
crystallographic is available [4]. The approach taken here
is to employ 8th order coefficient values which are the
minimum necessary to illustrate the effects in question.

Although coefficient set ‘A’ does not stabilize the
monoclinic state at zero field, the tendency towards mono-
clinic symmetry is signalled by the removal of the energy
barrier between the rhombohedral and tetragonal phases.
Figs 5 and 6 illustrate this with free energy contour plots
for the 8th order case. In Fig. 5, at zero field, the absolute
minimum in energy is close to the point {0.26, 0.26}.
However, there is a rather flat-bottomed valley connecting
this point to the “tetragonal” point on the y-axis. This
represents the easy path for rotation of the polarization.
On applying a field along [001], the minimum moves
continuously along this path. As an example Fig. 6 shows
the plot for E3 = 5 MV m−1 in which the minimum has
shifted to the point {0.19, 0.37}. Again this is emphasised
with plots of polarisation and strain as a function field
(Fig. 7a and b). The path of the induced strain is similar
to that seen in single crystal complex-perovskites [3].
Thus, under applied fields, the material passes through an
extended region of monoclinic stability, corresponding

T AB L E I I Additional 8th order free energy coefficients for
Pb(Zr1−zTiz)O3

A B

α222 −2 × 109 as Table I
α800 5 × 108 0
α620 −2 × 109 −2.5 × 109

α440 4 × 109 5 × 109

α422 0 0

18
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Figure 5 Contour plot of free energy as a function of polarization in the
[110] plane for Pb(Zr0.55Ti0.45)O3 from the eighth-order LGD model. The
energy at point {0,0} is 0 J m−3; the minimum occurs at point {0.26, 0.26}
with an energy of −7.05 × 106 J m−3; contours occur at intervals of 7 ×
104 J m−3.

to rotation of the polarization vector in the (110) plane.
These states are not accessible in the 6th order model.
Although the high-field strain calculated under the
8th order model is slightly lower than the 6th order
predictions, the weak field piezoelectric coefficient, i.e.
the slope of the strain-field curves, is much larger when
significant polarisation rotation is permitted. The fields
employed for these simulations are consistent with those
providing experimental for the complex perovskites.

It should be stressed that the coefficients listed in Ta-
ble II do not necessarily represent a self-consistent set of
free-energy coefficients, but have been selected purely to
illustrate the concepts under discussion.

Fig. 8 shows dθφ for Pb(Zr0.4Ti0.6)O3 at 300 K for the
same set of additional 8th order coefficients. For these
coefficients there is no stable monoclinic form in the zero-
field phase diagram, but as can be seen by comparison with
Fig. 2c, the set has a profound influence on dθφ . Although
the response is still consistent with tetragonal symmetry,
the maximum in piezoelectric coefficient lies away from
the polar direction, its locus being in the form of a circle
about the [001] axis and including the [111] direction.

The calculation of dθφ can provide an estimate of the
piezoelectric coefficient of a poled ceramic parallel to the
poling direction, dp, by averaging dθφ over the appropriate
range of angles. Fig. 9a compares the values of dp close to
the MPB, taking into account either tetragonal or rhom-
bohedral phase poling, for the Haun model and for the
8th order coefficient set A. The greater freedom for polar-
ization rotation provided by the 8th order terms results in
a significant increase in piezoelectric coefficient. Fig. 9b
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Figure 6 Contour plot of free energy as a function of polarization in the
[110] plane for Pb(Zr0.55Ti0.45)O3 from the eighth-order LGD model for a
field of 5 × 106 V m−1 applied parallel [001]. The energy at point {0,0} is
0 J m−3; the minimum occurs at point {0.19, 0.37} with an energy of −8.6
× 106 J m−3; contours occur at intervals of 9 × 104 J m−3.
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Figure 7 (a) Polarization and (b) strain as a function of applied field for
Pb(Zr0.55Ti0.45)O3 from the eighth-order LGD model.

shows the results of the same calculation for coefficient
set B. This set of 8th order coefficients has been selected
to illustrate the stabilisation of a monoclinic phase at the
MPB phase, over a range similar to that observed exper-
imentally [4]. The magnitude of piezoelectric coefficient
is greater than experiment suggests, but the data may ac-
count better for the sharp divergence of the piezoelectric
properties at the MPB [1] than do other models. For com-
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Figure 8 Single crystal piezoelectric coefficient as a function of angle, dθφ , for Pb(Zr0.4Ti0.6)O3, calculated from the 8th order LGD model using coefficient
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Figure 9 Piezoelectric coefficients as a function of titanium concentration
calculated for poled ceramics from the LGD model employing (a) the 6th
order and 8th order model (coefficient set A) and (b) the 8th order model
(coefficient set B).

parison, dθφ calculated for monoclinic Pb(Zr0.5Ti0.5)O3

from coefficient set B, is shown in Fig. 10.
The above examples give weight to the argument that

monoclinicity, the capacity of a crystal to be stable in

monoclinic forms over significant regions of parameter
space, (although not necessarily at zero-field), is impor-
tant in increasing piezoelectric activity by allowing the
rotation of the polarisation vector in the (110) plane.

5. Monoclinic nanodomains
There is strong evidence that the monoclinic motif is
present in PZT over a wide range of titanium con-
centration, not only in the region of the MPB. From
structure refinements of neutron diffraction data [9]
it appears that the “local symmetry,” as indicated
by the shift of the Pb-ions from the cubic setting,
might best be described as monoclinic in both the
rhombohedral and tetragonal phases. These suggestions
were prompted by the observation that in the structure
refinement process, if the cation displacements are con-
strained along directions which are consistent with the as-
sumed macroscopic symmetry, the temperature factors as-
sociated with these displacements appear to be unreason-
ably large in directions perpendicular to the displacement.
Temperature factors are normally expected to be spheri-
cally symmetric about the lattice position of the ion with
which they are associated. To eliminate the anisotropy,
without compromising the quality of the refinement, “off-
axis” cation displacements are introduced, i.e. Pb ions
may displace in directions other than [111] in the rhombo-
hedral phase or [001] in the tetragonal phase. Thus, a static
model structure which fit the data was identified: in the
rhombohedral phase [9], the displacement of the Pb-ions
from their cubic position comprises a long-range ordered,
homogeneous [111] displacement, superimposed with lo-
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Figure 10 Single crystal piezoelectric coefficient as a function of angle, dθφ , for Pb(Zr0.5Ti0.5)O3, calculated from the 8th order LGD model using coefficient
set B.

cal, randomly oriented, minor <001> shifts. Frantti [23]
applied the same arguments to data for the tetragonal
phase, proposing that homogeneous [001] cation displace-
ments are augmented with minor <110> (or possibly
<111>) randomly oriented shifts. In both cases, the ran-
dom shifts average to zero so that the macroscopic symme-
tries remain rhombohedral and tetragonal, respectively.

Bell and Furman postulated [24] that the macroscopic
monoclinic phase may be due to condensation of the short-
range random displacements into longer range ordered
structures and proposed a mixed-crystal LGD model to
describe this concept [25]. This concept has been more
thoroughly explored independently by Glazer [26]. Work-
ing from the hypothesis that the monoclinic phase at the
MPB was due to a change in coherence length of the
monoclinic nano-domains that constitute the “rhombohe-
dral” and “tetragonal” phases, it was concluded that for
structure probes with sufficiently fine coherence length
the morphotropic phase boundary does not exist.

First principles calculations [27, 28] tend to support
the model of local monoclinic symmetry. DFT calcu-
lations carried out on 8 and 6 unit supercells showed
that the Pb-ion displacements can be perturbed from
the macroscopic polar direction by the particular con-
formation of nearest neighbour Ti and Zr ions, with
resultant local polar displacements that need not con-
form to [001] or [111]. The implication is that for random
placements of Zr and Ti on the B-site sub-lattice, there is

disorder in the Pb displacements similar to those in the
Glazer model [26].

The A-site cation response to the B-site disorder in PZT
can be traced to the geometry of the Pb-O bonding of the
end-members [29]. The fact that PbTiO3 and PbZrO3 tend
to adopt different structures, may be attributed to the fact
that PbO itself is polymorphic with an α-form exhibiting
pyramidal Pb-O motifs of high geometric stability. In this
conformation, the Pb lone-pair takes up a position oppo-
site to the square oxygen base of the pyramid. An almost
identical Pb-O arrangement is also present in PbTiO3.
However, β-PbO contains a trigonal bi-pyramidal Pb-O
arrangement with less intrinsic stability, vestiges of which
can be found in the structure of PbZrO3. Local disorder in
PZT may therefore be interpreted as the strong tendency
of PbTiO3 to form square pyramid Pb-O groups being
frustrated by the destabilising influence of the Zr addi-
tions. Hence ambivalence in the oxygen coordination of
the polar ion, combined with the presence of a lone pair
can facilitate polar displacement disorder.

It is tempting to extend these arguments to cover known
monoclinic type phases in the complex perovskite MPB
systems. However, for these materials, an almost diamet-
rically opposite model has been proposed [30], in which
it is suggested that for domains with low wall energies,
nanodomain structures of local tetragonal symmetry oc-
cur, which appear monoclinic when examined with long
correlation length probes.
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6. Monoclinic fluctuations
The main experimental evidence for the Glazer model
comes from the relaxation of constraints on cation dis-
placements employed to avoid the appearance of highly
anisotropic temperature factors in structure refinements.
The possibility of anisotropic dynamic fluctuations was
suggested to be unphysical [7], but with little justifica-
tion. It is therefore relevant to examine this suggestion in
more detail.

The permittivity of ferroelectrics is generally highly
anisotropic; perpendicular to the polar axis it is much
larger than it is parallel to it. The permittivity is a mea-
sure of the ease of displacement of charge by an electric
field imposed on the system and in the case of PZT ap-
pears to be dominated by the polarizability of the Pb ion.
Any anisotropy observed in permittivity is hence a conse-
quence of anisotropy in the free energy and a reflection of
the anisotropy of the potential well for the Pb ion. Given
the dominant role of Pb in PZT, it can be argued that the
free energy landscape, as portrayed in Fig. 5, is an approx-
imation of the potential seen by the Pb ions. Hence, ther-
mal fluctuations within such a potential would be highly
anisotropic and, given the broad flat nature of the well in
the arc between [110] and [001], would be expected to be
much larger than parallel to [111]. Hence it may not be
so unusual for there to be significant, or even anomalous,
dynamic fluctuations of the polar cations approximately
perpendicular to the polar direction, producing the type
of temperature factors seen in the constrained structure
refinements. Indeed, extrapolating from Fig. 5 into three
dimensions would suggest that any dynamic fluctuations
observed would be constrained to a dish-shaped region
with its symmetry axis lying along the [111] axis, similar
in form to those described by Corker [7].

In this alternative model, the local symmetry at any
instant in time would still appear monoclinic, but with
temporal rather than spatial fluctuations of the Pb ion
about the polar axis. Hence, the macroscopic monoclinic
phase observed at the MPB would be interpreted as an
ordering and freezing-in of these fluctuations, rather than
a growth in the coherence length of static displacements.

Given the evidence from the ab initio calculations
that the Pb displacements are strongly dependent upon
the local Zr/Ti conformation, it would appear that the
static interpretation of local random displacements is the
more likely, although dynamic fluctuations may play a
role.

Independent of whether the static or dynamic model
offers the more accurate description of the structure, the
common feature is a unit cell which is essentially mono-
clinic across the phase diagram. It is the scale of its corre-
lation in space and time which determines the macroscop-
ically observed phase. It is therefore pertinent to ask why
the coherence of the local monoclinic structures should
become macroscopic near the MPB?

7. Statistics of the Zr/Ti distribution
To understand this aspect of the problem, an exploration of
the statistics of the Zr/Ti conformation is useful, especially
in view of the rather small sample sizes considered in the
ab initio studies [28]. The Zr/Ti distribution in PZT is, to
date, believed to be totally random. A simple Monte Carlo
type model has been constructed to determine the average
Ti (or Zr) cluster size as a function of the Ti concentration
under the assumption of random distributions.

A rigorous determination of cluster size for a 3-
dimensional array of random B-site distributions is
not a trivial exercise. Here an approximate approach
is taken based on the construction of a list of cluster
diameters from a 1-dimensional array of random B-site
distributions. To construct a representative list of cluster
volumes, each member of the list of cluster diameters
is multiplied by all members of the list twice. Thus,
for a Ti concentration, z, each element in an n-element
linear array is populated with a random number ri which
controls the contents of a second array, u: if ri < z,
then ui = 1, otherwise ui = 0, representing a Ti unit
cell and a Zr unit cell respectively. Examining u for the
number of contiguous occurrences of ‘1’s provides an
array of Ti cluster sizes, s. To ensure that the analysis
is valid in three dimensions, a list of cluster volumes is
derived by flattening the cube of the array, s × s × s (i.e.
the 3-dimensional array is re-listed as a 1-dimensional
array). Although this method provides a distribution of
cluster volumes, which approximates to a log normal
distribution, to simplify the analysis only the mean of the
distribution of cluster volume shall be considered here.

Using the above method, mean cluster volumes were
calculated for z = 0.1 to 0.9 at intervals of 0.1. In each
case, the calculation was carried out for an initial linear
array of n = 500 unit cells. The resulting 3-dimensional
analysis resulted in more than 1 million clusters for z in
the range 0.4 to 0.6, and more than 100,000 outside this
range. For each value of z, the average of 10 mean cluster
volume calculations was determined. The mean cluster
volume, v, expressed in unit cells and shown in Fig. 11,
fits the surprisingly simple function

v = 1/(1 − z)3. (8)

Hence the mean titanium cluster diameter is equal to
1/(1−z) unit cells, whilst the mean zirconium cluster size
is 1/z cells.

The data show that the mean number of contiguous
titanium unit cells increases from 1 at vanishingly small
concentrations, to just less than 10 at z = 0.5, to more than
1000 at z = 0.9. Hence, towards the end-members where
one of the B-site elements is dominant and Zr/Ti confor-
mation irrelevant, significant volumes of local monoclinic
symmetry would seem unlikely. Even in the range 0.4 <
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Figure 11 Mean Ti cluster volume calculated as a function of composition
for randomly distributed Zr/Ti.

Figure 12 The fraction of the mean cluster volume constituted by surface
unit cells as a function of composition.

z < 0.6, where the dominant B-site species is expected
to have a cluster volume of between 10 and 20 unit cells
the effect of B-site conformation might be thought to be
minimal and might not conform to Grinberg’s ab initio
calculation [28] in which the assumed cluster sizes are
somewhat smaller than 10 unit cells. However, considera-
tion of cluster volumes alone can be misleading; analysis
of the most likely nearest neighbour is also necessary.
This can be estimated by comparing the number of unit
cells at the “surface” of a cluster (i.e. the number of Ti
unit cells with at least one Zr nearest neighbour) with the
total volume of the cluster. For cuboid clusters of linear
dimension l, the number of surface cells, or the volume
of the “shell”, equates to l3 – (l – 2)3. This is expressed
as a shell volume to cluster volume ratio, γ , in Fig. 12,
for both the Monte Carlo data and the assumption that
l = 1/(1−z). As a result of the assumption of cubic clus-
ters, the relationship is only valid for l ≥ 2 (z ≥ 0.5);
γ therefore saturates at unity for z < 0.5 and relates to
the probability of a Ti-cell having a Zr-cell as a nearest
neighbour. Representative 2-dimensional arrays of B-site
occupancy are shown in Fig. 13 for values of z of 0.5, 07
and 0.9, however these can be misleading as the influence
of the third dimension on nearest neighbour probability

Figure 13 2-dimensional maps of random B-site occupancy for values of
z: (a) 0.5, (b) 0.7 and (c) 0.9; Zr occupied cells are shown in black.

is significant and only apparent in the interpretation of
Fig. 12. For z < 0.7, virtually all Ti-cells have a Zr-cell
as a nearest neighbour and it is only for z > 0.9 that
more than 50% of Ti-cells do not have a Zr neighbour.
This treatment therefore shows that for the majority of
the phase diagram local Zr/Ti conformations are certainly
able to influence the ion displacements in the majority
of unit cells and lends further support to the existence of
disorder in the local Pb displacements.

The gradual change of the orientation of the polarization
with change in Ti concentration requires only that there be
chemical disorder on the B-site coupled with the conflict-
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ing influences of the two B-site cations on Pb-O bonding.
However, the stabilisation of a macroscopic monoclinic
phase would seem to require a significant change in the
coherence length of these two factors. For the monoclinic
phase to appear macroscopic to neutrons and X-rays, the
structure should be coherent over at least 0.1 µm [26].
Do the statistics of the Zr/Ti conformation around z = 0.5
provide such coherence ? The sum of the mean cluster
size of the Zr and Ti clusters is actually a minimum at z
= 0.5, with the most likely minimum volume in which
an equal number of Zr and Ti ions is found being only
16 unit cells (i.e. 1 nm3). Hence for a neutron-coherent
monoclinic region to be observed we should expect some
order in the Zr/Ti distribution that transcends the cluster
sizes given by random statistics. Given their size differ-
ence, positional ordering of the Zr and Ti ions is clearly
possible, but it has not yet been reported for PZT.

The two order-parameter LGD model of Bell and Fur-
man [25] predicts a stable monoclinic phase in the region
of the MPB, through a coupling of the free energy func-
tions for PbTiO3 and the fictional ferroelectric PbZrO3

of Table I. Whilst this model was proposed as a means
of introducing the influence of the disorder in the Zr/Ti
distribution into the thermodynamic model, it does not
address the issue of coherence length. There is no im-
plication in the results that coherence in the direction of
polarization in the monoclinic phase would be observable
experimentally. The model was established in the context
of the conventional rhombohedral and tetragonal phases
being observed at all scale lengths and reflects this. How-
ever, it is consistent with the explanation given above
for the existence of large anisotropic temperature factors
when structure refinements are constrained to these con-
ventional macroscopic symmetries.

8. Piezoelectricity and local structures
What are the implications of the local monoclinic distor-
tions for piezoelectric properties? As demonstrated above,
the inclusion of terms in the LGD polarization expan-
sions which tend to stabilize monoclinic symmetry lead
to large piezoelectric coefficients due to rotation of the
polarization in the [110] plane. However, the calculations
which produced Fig. 9, for example, are based on poly-
nomial expansions which are invariant under cubic sym-
metry operations, hence there are 48 identical monoclinic
solutions, corresponding to the 8 symmetry related direc-
tions of polarization in each of the 6 {110} planes. That
is, monoclinic perovskite ferroelectrics have 48 degen-
erate domain states. On this basis, poling of monoclinic
ceramics, would result in orientation of the favourable
[111]-[001] channel in the (110) plane within the quad-
rant containing the poling direction and allowing the max-
imum piezoelectric contribution of polarization rotation
in this plane. However, the nano-domains postulated in the

Glazer model [26] are not locally degenerate. The impli-
cation is that the local Zr/Ti conformation biases the free
energy function towards a specific direction of polariza-
tion. Poling may be able to switch the major component
of polarization (i.e. along <111> or <001>). However,
as the potential topology for each of the 48 domains states
will be different, it is not clear what the effect on the mi-
nor components of cation displacement will be. Due to
the “internal bias” provided by random Zr/Ti conforma-
tions, the contribution of polarization rotation in the (110)
plane would be less significant than the symmetrical LGD
model suggests and may be one reason why the predic-
tions of Fig. 9 overestimate the piezoelectric coefficients.
However, in the case of Zr/Ti ordering close to z = 0.5,
in which a greater degree of local symmetry and domain
state degeneracy might be restored, the polarization rota-
tion model would be expected to be more significant.

9. Conclusions
Recently proposed models of piezoelectricity in mor-
photropic phase boundary perovskites and for the struc-
ture of PZT have been examined employing Landau-
Ginzburg-Devonshire theory and statistical models of
Zr/Ti conformation. It is shown that the mechanism of
polarization rotation in the (110) plane can enhance the
piezoelectric effect in ceramics and that the tendency to-
wards the formation of macroscopic monoclinic forms
facilitates this by reducing the energy for realignment
of the polarization vector. The proposed model of static,
monoclinic nano-domains which are observed as rhom-
bohedral or tetragonal macroscopic structures appears to
be consistent with the statistics of random Zr/Ti confor-
mations across a large region of the PZT phase diagram.
However, it is argued that the increase in coherence length
of the nano-domains, proposed as the mechanism for the
appearance of the macroscopic monoclinic phase close to
z = 0.5, may be a consequence of some undetected or-
der in the B-site cations. Furthermore, the biasing of the
nano-domain orientation by the local Zr/Ti conformation
may impede the polarization rotation contribution to the
piezoelectric effect.

It has been argued that significant anisotropic thermal
fluctuations, of the type that are seen in constrained struc-
ture refinements, are not inconsistent with the dielectric
anisotropy of PZT, particularly under the assumption of a
tendency towards macroscopic monoclinicity. This propo-
sition would also be more consistent with the concept of
significant polarization rotation and hence should not yet
be ruled out in favour of the nano-domain structure model.

Further studies toward deeper insight are: structure de-
terminations under applied electric fields; modelling of
temperature factors from dielectric data; modelling of the
switching of locally biased monoclinic domains; high res-
olution studies of Zr/Ti conformations at the MPB; a more
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extensive study of the statistics of Zr/Ti conformations and
larger scale ab initio simulations.
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